

SIL meat module update

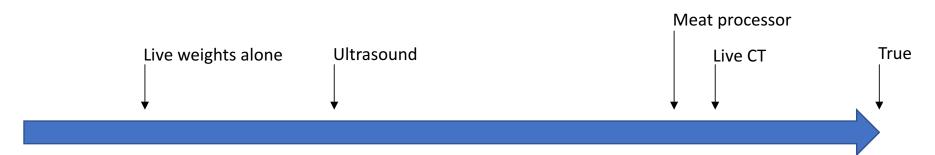
Neville Jopson, AbacusBio Ltd

Genetics of carcass merit


- Definition of merit depends on position in value chain
 - Commercial farmer sells a lamb at a live weight
 - Meat processor buys a carcass and sells cuts
 - Retailer buys primal cuts and sells further-processed cuts presented to attract consumer
 - Consumer buys a retail cut with expectations on price and quality
- Definition not perfectly aligned from start to end
- SIL definition covers farmer and some meat processor

Measurement technologies

Ultrasound


Meat processor, eg VIAscan

CT scanner

Carcass merit assessment

Increasing measurement accuracy
Increasing cost of measurement

Measurement of carcass quality in SIL

| 1999 | 2003 | 2006 | 2008 | 2010 to present

'MEAT'

Live weights and ultrasound eye muscle data (data from late 1980s)

'CT MEAT'

LWs, ultrasound and carcass CT scan data

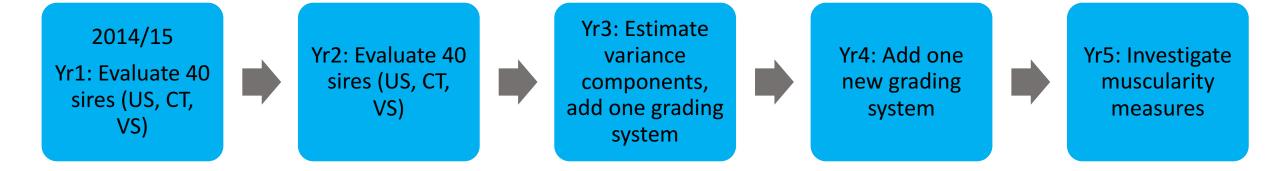
'INNERVALUE'

LWs, US and CT primal cut data

'VIASCAN'
LWs, US and VIAscan

'MEAT (V2)'

- Uses all available data with the ability to exclude VIAscan and/or CT data
- One index
- Still largely based on late 1980s data


Data requirements

- 75 to 80 sires that are representative of the industry at current carcass weights, and up to 10 progeny per sire
- Where possible, all progeny measured for all traits (live weight, ultrasound, CT and VIAscan)
- Additional measures of carcass merit (e.g. shape)

Intended work programme

Actual work programme

Intended:

2014/15

Yr1: Evaluate 40 sires (US, CT, VS)

Yr2: Evaluate 40 sires (US, CT, VS)

Yr3: Estimate
variance
components, add
one grading
system

Yr4: Add one new grading system

Yr5: Investigate muscularity measures

Actual:

Yr1: Evaluate 23 sires (US, CT, VS)

Yr2: Evaluate 21 sires (US, CT, VS); Interim VarComp

Yr3: Evaluate 20 sires (US, CT, VS)

Yr4: Evaluate ~20 sires (US, CT, VS)

Yr5: Estimate
VarComp; add
one grading
system

Yr2: Calibrate Marel grading system

Yr3: Research BV for Marel system

Yr4: Research BV for Marel

Yr5: ?

Where are we at?

Year	Sires	Progeny	Average CWT (kg)	Source				
2014/15	23	217 (9.4)	15.9	3 industry flocks				
2015/16	21	192 (9.1)	18.8	3 industry flocks				
2016/17	20	100 (5.0)	21.6	Invermay CPT				
Totals	64	509 (8.0)	18.2					

Interim analysis - data

Trait	n	Trait	n				
WWT	124,967	VIAscan traits	18,112				
LW8	98,947	InnerValue CT	1,661				
FD	52,501	Spiral CT (true)	312				
EMD	50,868						
EMW	49,021						

Spiral CT traits (Goal traits)

	FATHL	se	LEANHL	se	BONEHL	se	FATLN	se	LEANLN	se	BONELN	se	FATSH	se	LEANSH	se	BONESH	se	FATFP	se	LEANFP	se	BONEFP	se
FATHL			0.58	0.045	0.45	0.056	0.90	0.013	0.55	0.047	0.44	0.055	ne		0.52	0.052	0.38	0.062	0.88	0.014	0.33	0.061	0.37	0.058
LEANHL	0.56	0.199			0.79	0.024	0.52	0.050	0.86	0.017	0.63	0.041	0.56	0.048	0.85	0.019	0.69	0.036	0.53	0.047	0.67	0.036	0.52	0.048
BONEHL	0.40	0.251	0.89	0.077			0.37	0.060	0.60	0.042	0.67	0.036	0.39	0.061	0.61	0.042	0.75	0.029	0.40	0.056	0.41	0.055	0.54	0.046
FATLN	0.95	0.035	0.56	0.201	0.36	0.255			0.60	0.043	0.45	0.055	ne		0.52	0.052	0.36	0.063	0.92	0.010	0.32	0.061	0.33	0.060
LEANLN	0.61	0.204	0.90	0.070	0.78	0.154	0.69	0.173			0.74	0.031	ne		0.85	0.018	ne		0.58	0.043	0.72	0.031	0.52	0.049
BONELN	0.38	0.267	0.49	0.232	0.95	0.090	0.25	0.288	0.47	0.242			0.43	0.058	0.65	0.040	0.83	0.021	0.50	0.050	0.49	0.052	0.73	0.030
FATSH	ne		0.67	0.154	0.38	0.236	ne		ne		0.32	0.258			ne		0.46	0.059	ne		ne		ne	
LEANSH	0.36	0.251	0.90	0.069	0.78	0.146	0.43	0.231	0.90	0.068	0.47	0.235	ne				0.79	0.027	0.54	0.048	0.73	0.030	0.52	0.049
BONESH	0.26	0.260	0.81	0.113	1.00	0.047	0.23	0.259	ne		0.90	0.070	0.37	0.218	0.81	0.100			ne		ne		ne	
FATFP	0.98	0.029	0.64	0.208	0.55	0.245	0.97	0.033	0.71	0.198	0.41	0.283	ne		0.45	0.253	ne				0.37	0.057	0.46	0.051
LEANFP	0.35	0.293	0.85	0.136	0.73	0.225	0.32	0.290	0.90	0.117	0.32	0.304	ne		1.12	0.076	ne		0.37	0.314			0.52	0.049
BONEFP	0.35	0.315	0.45	0.285	0.87	0.167	0.14	0.343	0.20	0.361	0.86	0.137	ne		0.31	0.313	ne		0.35	0.335	0.20	0.361		

r_G below, r_P above. Based on 44 programme sires

Meat processor systems

- Systems produce yield data (definition important)
- Convert to a set of standard traits
 - hindleg lean
 - loin lean
 - shoulder lean
 - carcass fat
 - carcass weight
- Calibrate each system relative to spiral CT
- Scale data for the accuracy of the system

PML's Marel system

Breeding values for Marel system

- Horizon Farms Next Generation progeny test
 - Young terminal sire rams evaluated on HFL Maraetotara property
 - ~800 progeny slaughtered through PML for born-2016 animals
 - Expectation of SIL meat yield eBVs
- Don't have the ability yet to give SIL meat yield eBV (now in Year 5 of the programme)
- Research breeding values provided to ram breeding contributors this year and next year

Muscularity

- European countries use the EUROP conformation grade
- Some believe that current grading systems do not capture all carcass value and that some measures of shape may be important
- Selection can change the 'shape' of animals
- Substantial data to investigate, but needs some meat processor input regarding what is desirable

